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1. Introduction.

There are several ways of developing the autoregressive stochastic proces as a finite—
parameter model for time series analysis. In this paper we obtain the properties of the au-
toregressive process from a stationary stochastic process that satisfies the simple condition
that a linear combination of current and past elements of the process is independent of (or
alternatively uncorrelated with) all earlier elements of the process. This approach provides
a coherent, clear, and rigorous exposition of the autoregressive model. The stationarity and
independence imply that the roots of the associated polynomial equation are less than 1 in
absolute value. The existence of the moving average representation is deduced and its form for
distinct roots. The Yule-Walker equations, which are derived, determine the autocovariance
sequence. Another set of parameters consists of the variance of the process and the partial

autocorrelation sequence.

2. Definition of the Autoregressive Process.

A stochastic process {y; }, which consists of a doubly infinite sequence of random variables

¥, t=...,—1,0,1,..., can be defined by means of the distributions of all finite sets of these
variables, y¢,,...,¥,, n = 1,2,.... The stochastic process is stationary if the distribution of
Yt1+hs - - - Yto+h 18 the same as the distribution of y;,,...,y, for h=...,-1,0,1,...and n =

1,2,.... If £y? < oo, then £ y; does not depend on ¢ and we write £y = p and € (ye—p) (Yern—i)

does not depend on ¢t and we write

(1) E(ye — w)(ween —p)=0o(h), h=...,-1,0,1,....

Note that o(—h) = o(h). The quantity o(h) is known as the autocovariance of order h.

We now consider a stationary stochastic process {y;} with mean p such that for some

constants fo =1, 81,...,5p



(2) > " Bilye-; — 1) = ue
j=0

is independent of y;—1,yt-2,...for t = ..., ~1,0,1,.... Then {u;} is a stationary stochastic
process because the distribution of %4, 4,, . . ., ut,+s does not depend on s (since the distribution
Of Yt 40, Ytstbs—1s- s Ytr48—ps- > Ytntss - -» Ytnts—p d0es not depend on s). Furthermore, u; is
independent of u;—; = 2?:0 Bi(ye—j—1 — n),ut—2 = Z’;:o Bi(ye-j-2 — 1), .... Thus the u’s
are independently and identically distributed. Since £y; = u, then u; = 0. If £y? < oo, we
can write £u? = o%, which we assume to be positive. (If 0% = 0, the process satisfies a linear
relation with probability 1 and is deterministic.) The process {y:} is called an autoregressive

pr.ocess of order p, and (2) is called a stochastic difference equation of degree p.

Now multiply the left—hand and right—hand sides of the stochastic difference equation (2)
by the left—-hand and right-hand sides of y; — p = us — Ef;:l Bi(ye—; — p), respectively, and
take expected values, assuming £ (y; — p)? < oo. Since u; is independent of y;—_y, ..., Yt—p, We

obtain

(3) > Bio(j) ="
j=0

When we multiply both sides of (2) by y:—, — u and take expected values, we obtain

P
(4) Eﬂja(s—j)=0, s=1,2,....
=0

Equations (3) and (4) will be called the Yule-Walker equations. (Many authors do not include
(3} in “the Yule-Walker equations.”)

Now we shall show that the roots of the “associated polynomial equation are less than 1

in absolute value. If p =1, (3) and (4) for s =1 are

(5) 0(0) + B1a(1) = o?,



() o(1) + B1o(0) = 0.

These yield

(7) (1-p))a(0) =o.

Since 0% > 0, it follows that ¢(0) > 0 and (1-42) > 0; that is |8 < 1. (If % = 0 and o(0) > 0,
then either 81 = 1,0(1) = ~(0), and y; = —y;—; with probability 1 or g; = —1,0(1) = a(0),
and y; = y;—1 with probability 1.)

Now suppose p = 2 and the roots of

(8) z?+ f1z+ 2 =0

are complex conjugate (82 — 48; < 0); denote the roots as ae**® where 0 < ¢ and 0 < 8 < 7.

Then (3) and (4) for s =1 and 2 are

(9) 0(0) — 2acosfo(1) + a?a(2) = o2,
(10) —2acos80(0) + (1 + a?)e(1) =0,
(11) o(2) — 2acos0o(1) + a’o(0) = 0.

Subtraction of (11) from (9) yields

(12) (1- a?)[e(0) - a(2)] = 0.



Since 0% > 0, we see that a < 1 and ¢(2) < 0(0) because ¢(2) < o(0) by the Cauchy-Schwarz

inequality. (If % = 0,0(0) > 0, and the roots are not real, a = 1.)

Now we consider p in general. Let zj,...,z, be the roots of the associated polynomial

equation

)4
(13) > BiaFi =o.
j=0

Then the associated polynomial can be written

(14) > Bzt =[]z - =),
) j=0 i=1

and the stochastic difference equation can be written -

4

(15) we= Bili(ye—u =[]0 -zL)(w-un),
j=0

=1

where LIy = yt—j. If 21 is a real root, we can write the stochastic difference equation as

(16) W — TyWi1 = Uy,

where

P
(17) we = [[(1 - = L) (g — »)-
=2
Then u; is independent of w;_1,wi—2,..., and {w;} is a stationary autoregressive process of
order 1 and hence |z1| < 1. If z; and z; are conjugate complex roots, z; = ae'? and 3 = ae ™,

then



(18) vt — 2 co8 0vs_y + P vp_g = uy,

where

(19) ve =[] - z:L) (v — n).

=3
Then u; is independent of v;_1,v;:_3,..., and {v} is a stationary autoregressive process of

order 2. From the above treatment of the case p = 2, we know that |z;| = |z3| = & < 1. We

summarize the above results in the following theorem.

Theorem 1. Let {y;} be a stationary stochastic process with mean €y; = p and finite
variance such that (2) holds for suitable 8,...,8, (fo = 1) and £u? = 62 > 0 with u,; inde-
pendent of y;_1,y:—2,.... Then u; is a sequence of independently and identically distributed
random variables. The second-order moments & (y; — p)(ye+n — p) = o(h) satisfy (3) and (4).

The roots of the associated polynomial equation (13) are less than 1 in absolute value.

3. The Moving Average Representation.

Now we want to show that y; can be expressed as an infinite linear combination of the

independent u;. In the case of p = 1 we write

(20) Yt = QY1 + ug.

If we replace y;—; in (20) by @y¢—2 + us—1 (which is (20) with ¢ replaced by t — 1), we obtain

(21) Yt = up + due—1 + ¢2ye_s.

If we substitute successively, we obtain



(22) Ye =t + Puey + ...+ S ue_s + 6" Y (511)-

From (22) we obtain

(23) Elye — (ue + dugy + ...+ °u,)? = ¢2(’+1)€yt2_(,+1) .

Since |¢| = |B1| < 1, the right-hand side of (23) goes to 0 as s increases. Then we write

(24) Yt = Z ¢rut—r

r=0

and say that the series on the right converges in the mean (of in the mean square or in quadratic

mean) to y;.

Now let us turn to the general case. The lag operator £ is a linear operator for which

polynomials are defined. The autoregressive model (2) with 2 = 0 can be written

P :
(25) Zﬂjﬁj Yt = .

=0

Formally (25) can be inverted to give

-1
14
(26) Y = (Z Bil? | u

I
TR
[
&
iH
~——
&

where the coeflicients 8, 61, . . . are defined by the identity



p 00
(27) 1= Zﬂjzj Z&,z’
j=0

8=0

P oo

= E E ﬂj632]+a
7=0 s=0
oo min(r,p)

=Z Z Bibr—i2",

r=0 ;=0

where r = 5 4 s and the limits of the last sum on 7 depend on the value of r. The coefficient

of each power of z on the left-hand side of (27) is equal to the coefficient of that power on the
right-hand side. Thus

1 = Bobo = bo,

(28) 0 = Bob1 + B1bo = 61 + B,

0 = Bobp—1 + P16p-2 + ...+ Bp-160,

(29) 0=ﬂ05t+,316t-—1+---+ﬂp5t—p; t=p,p+1,....

We look for a sequence o, 81, ... that satisfies the p equations (28) and the set of equations
(29). Equations (28) determine 6o, ...,8,—1 successively and (29) determines 6p,8p41,... in

turn; the solution to these equations exists and is unique.

Does (26) converge in the mean? We note that

[o o]
(30) (1-z2)' = foz’
=0

converges uniformly for |2| < 7/|z;| for 0 < v < 1. Hence,



o P 00
(31) Z 5328 = (1 + ,612 P ﬂpz")"l = H (Z x:z")
=0 - =1 \s=0
converges uniformly for |z| < 4/ max;=, . p|z;|, which is greater than 1 if v is large enough.

Hence, §; — 0 as s — oco. We write for m > p

m m p
(32) Z Osttg—y = Z by Z ﬂjyt—a—j
§=0 s=0 j=0
m 14

= Z Z ,3j5syt—a—j

=0 ;=0
m+p min(r,p)

= Z Z B br—iYt—r

r=0 j=max(0,r—m)

m+p 14

=y + Z Z ,Bjar—-jyt—-r :

r=m+1 j=r—m

by comparison with (27). From this we obtain for m > p

m 2 m+p
(33) £ (yt—}:ssut_,) =€ > > Bibe_jves

s=0 r=m+1 3

The right-hand side is a quadratic form in &pn41-p,...,0n4p. Since §g — 0 as s — oo, the

right-hand side converges to 0 and (26) converges in the mean as m — oo.

Theorem 2. If y;, t =...,—1,0,1,..., satisfies (2) with u; independent of y;_1, ys—3, . ..

and £y; = p, then

Lo o]
(34) yr = p+ Z Ssue—s
s=0
converges in the mean, where § = 1, 61, ... are determined by (28) and (29).

The expression (34) is called the moving average representation of the autoregressive

process {y;}.



We shall now find an explicit expression for §; when the roots of the associated polynomial

equation are distinct.

The equation (29) is a homogeneous difference equation. (It is homogeneous of degree
1 in the §;’s, and it is a difference equation because it can be written as a polynomial in
V =1 - L operating on 6;.) The case p = 1 suggests that a solution to the homogeneous

difference equation (29) may be of the form § = z*!. Then the right-hand side of

P P
e S et = a3
j=0 7=0

is 0 if z satisfies the associated polynomial equation (13); that is, if = is one of the roots

T1,...,%p of (13). It follows that

14
(36) §=) kazi, t=0,1,...,

=1

is also a solution. If we substitute (36) into (28), we obtain

p
1= an
5 p ’
(37) 0=) kizi+Biy k=) (z+ bk,
i=1 =1 i=1

. p 4 14 14
0= kzl '+ ) ka4 1 k= (2F TN+ fr1al P L+ Bk

=1 =1 i=1 i=1

The detrminant of the coefficients of ky, ..., kp in (37) is

(38).

1 1 1
71+ P z2+ B zp + P1
AN 4B BT B A Bt o BT iEb i 4 By




i 0 .. 0 1 i 1

_ ﬂl 1 ... O z3 Zg :I:p
Bo—1 Bp-z ... 1l l2f7* 571 .. 77

=H(:z:,~—a:,-).,

i<i

This (Vandermonde) determinant is different from 0 if and only if the roots are distinct. Hence,
there is a unique solution to (28) of the form (36) if and only if the roots of (13) are distinct.
Then & = > F_, k;z! is a solution to (28) and (29) and is the only solution to (28). Since &; is
uniquely determined by 6;-1,...,8-p in (29),t = p,p+1,.. ., the solution of & = }_F_, kizt is
the unique solution to (28) and (29) if the roots of (13) are distinct.

Theorem 3. The unique solution to the homogeneous difference equation (29) satisfying
the conditions (28) is 6 = >_©_, kiz!, where ky, ..., k, satisfy (37) and z,.. ., z, are the roots

of (13),if zy,. .., z, are distinct.

Ip=1, 6 = (—p1)", an exponential function of r. If p = 2 and z; and z, are different,

kl = x1/(x1 d 122),’02 = —-:1:2/(:1:1 - :L’g), and

xr+1_xr+1
(39) 6= b2 r=0,1,....
Ty — Ty

If z; and x4 are real, §, is a linear combination of two exponential functions of r. If the roots

are complex, we may write them z; = ae'® and z3 = ce™*. Then

eH0(r+1) _ cif(r+1)

(40) 6 =a" gib _ g—if

_ roin 0(r +1)

sind ’

a damped sine function of r.

10



4. The Autocovariance Sequence.

-Now we find an explicit expression for {o(h)} when the roots of the associated polynomial
equation are distinct. To do this we first demonstrate that (3) and the first p equations in
(4) determine 6(0),0(1),...,0(p) uniquely regardless of whether the roots are distinct. Since

o(h) =0(—h),h=1,...,p— 1, these p + 1 equations can be written

(41) 0(0) + B1o(1) + ...+ Bpo(p) = o2,

B1o(0)+ (1+ B2)o(1)+ ...+ Bpo(p—1) =0,

859(0) + Bp10(1) + ... + o (p) = 0.

The determinant of the matrix of coefficients is

1 B Bz ... Bp-1 By

B 1+ 2 Bz ... Bp O

(12) éz B1 + Bs 1 + Bse ... O O
Bp-1 Pp—2t+Bp Bp-3 ... 1 O

Pp Bp-1 Bo—2 ... P11

If we multiply the (5 + 1)st column by x{ + x;j and add the result to 2 times the first column,

j=1,...,p, we obtain as the first column the transpose of

p P P P P ] P )
) (ZﬂﬂHZﬂij’,xIlZﬂjz’l+ﬂ=12ﬂjzf’,---,wf"§:ﬂﬂi+x‘1’Zﬂ1x1’)
3=0 7=0 j=0 j=0 7=0

§=0

p .
= Zﬂjt{(l,xl, .. ,I{)
=0

11



because E?:o ﬂjxl—j = 0. We assume that 8, # 0 and hence z; #0, s =1,...,p. Thus
P R
(44) > Bz =[] - ziz)
j=0 =1

is a factor of the determinant. Since this operation can be done with any root,

(45) [T - =zisy)

i<
is a factor. The term in the determinant of highest degree in z;,...,2, is
P
(46) iﬂ§+1 — :l:Ha:f+1,
i=1
which is the degree of (45). Since the determinant is 1 for z; = ... = z, = 0, the determinant

is (45). This is different from 0 because |z;| < 1, 1 = 1, ..., p. Thus the Yule-Walker equations

determine o(0),...,0(p) uniquely as the solution to (41).

The equation (4) is a homogeneous difference equation for o(h), h = —(p—1), —(p—2),.. .,

and o(h) = >_F_, cial satisfies it for any cy,...,c,. However, if the roots are distinct there is
only one set of ¢y, ...,cp that satisfies o(h) = .2, c;z? for h = —(p — 1),...,0; that is,
o(0) 1 1 - 1 1
a(-1) z;t Py N c2
(47) . = :
o(-p+1) z;(p_l) z;(p_l) ... :z:;(p‘l) ¢p

The determinant of the matrix of coefficients of ¢1,...,¢cp in (47) in the Vandermonde deter-

. -1 -1 . .
minant [ [, ;(z;" — z; ), which is nonzero.

Theorem 4. If the roots of the associated polynomial equation are distinct and 8, # 0,
the autocovariances are given by o(h) = 3_F_, c;xf‘, h=1-p,2—p,..., wherecy,...,cp satisfy

(47) or equivalently (3) and o(h) =o(-h), h=1,...,p— 1.

Kp=1,0(h) = (-B1)"?/(1 - %), h=0,1,..., an exponential function of h. If p = 2

and z; and z2 are different,

12



0.2 ‘xh+1 2:h+1
(48) o(h) = ( L z )

(21— z2)(1 — z122) \ 1 — 22 T 1- z3

If z; and z; are real, o(h) is a linear combination of two exponential functions. If p = 2 and

z1 and z; are conjugate complex, ae**’, then (48) can be written

o?aP[sinf(h + 1) — o?sinf(h — 1)]

49 h) = 3
(49) o (k) (1 - a?)sinf[1 — 202 cos 20 + of]
_ o2aPh cos(0h — )
(1 - a?)sindv/1 - 2a%cos 20 + at’
where
(1 — a®) cosf
50 £ =
(50) any (1+ a?)sing

Here we have assumed that {y;} is strictly stationary and that u; defined by (2) is in-
depenent of y;_1,¥Y:—2,.... Then the u,’s are independently identically distributed. A similar
development can be carried out on the assumptions that {y;} is stationary in the wide sense

and that u; is uncorrelated with y;—1,¥:—2,.... Then the u;’s are uncorrelated and have the

same variance.

An alternative approach to the stationary autoregressive model is to assume {u;} consists
of independently identically distributed random variables with u; = 0 and £u? = ¢%. Then
define y; by (34), where {6,} satisfies (28) and (29) for some fi, ..., B, with the roots of (13)

less than 1 in absolute value. Then {y;} satisfies (2) and u; is independent of y;—1,ys—2,. . -

5. The Direction of Time.

What gives time the direction is that wu; is independent of the observable past:
Yi—1,Yt—2,. .- If {y:} is Gaussian (that is, all finite distributions are norrﬁal), then {y;} is
determined by £y = p and €(y; — p)(ye+n — ) = o(h),h = 0,1,.... Since o(h) = o(—h),

13



the covariance function does not distinguish between the sequence t =...,—1,0,1,... and the

sequence t =...,1,0,—1,.... In fact, for B4,..., 8, and o? given, the random variable
P
(51) Zﬂjyt+h = w;
=0

is independent of yi11, Yt+2, . - -, {w¢} is a sequence of independently identically distributed ran-
dom variables, and the Yule~Walker equations hold. For example, if o(h) = (—81)*a(0),h =
+1,42,..., then (51) is

(52) Ye + Brye+1 = wy,

and ye = 332 0(— 1) e+,

Let us look briefly at the case in which some roots of the polynomial equation are larger
than 1 in absolute value. Suppose |z;| > 1, i =1,...,¢,|zi| <1, i =¢+1,...,p. We write

the stochastic difference equation as

P
(53) up = Zﬂrﬂryt
r=0
4
= H(l - xg.C)ytu
=1

The inverse of (53) is

4
(54) ye=J(1—zL) u
i=1
q 4
=[[a-=z20)" I] - L) u,
i=1 i=q+1
1(-3)7(-37) Iu-=o"
=T](-= 1-— 1- ;L) tu,
i=1 i % f=g+1

where P = £71. Each term (1—z; ' P)~! can be expanded in a power series in P, and each term
(1 —z;L£)"! can be expanded in a power series in £. If 1 < g < p, the operator will be a power
series in £ (= P~1) and in P (= L£7!); the indicated infinite series in ..., uz—y, us, Ust1, . ..

will be doubly infinite. If ¢ = p (all roots in absolute value greater than 1), the operator is

14



an infinite power series in P (only nonnegative powers); the indicated infinite series in the
random variables involves ¢y, %t4p41,.... This discussion is in purely formal terms, but it
can be justified in the manner used for the case of all roots less than 1 in absolute value. In

fact, if the linear form []7_, (1 — z;£)y; is replaced by the linear form (for any z;’s)

(55) I[P == T Q- =il)pe =

i=1 i=r+1
the residuals u; are also uncorrelated (though not necessarily independent).

Now consider the special case of one root equal to 1
(56) Ye = Ye—1 + ue,

and assume fu; =0, £u? = 0%, Then

(57) Yt~ Yems = U+ U1 + ...+ Upyy,
and
(58) ' E(ye — ye-s) = Ey? + €y, — 26 iy = s0°.

If the process is stationary, £yZ = £yZ_,; from (58) we obtain

1
(59) EYtyt—s = é'yf - 5802, s=1,2,....

This can hold for all s > 0 only if 62 = 0 and then y; = y;_, with probability 1. Intuitively,
we see that unless the variance of u; is 0, (56) implies that the variance of y; increases with t,

but this fact is contrary to stationarity.

A more general case is

(60) (1-2£) H(l —zi L)y = uy,

i=2

15



where |z;| # 1,i =2,...,p. B [[2_,(1 — z:L)ys = z, then (1 — L)z = u¢ and 2z = 2z, with
probability 1, say z; = z. Thus

4

(61) TG0 - =)y =2

=2

and y; = D oo _,, 852; that is, y; = y;—, with probability 1. (z can be a random variable.)

6. Fluctuations of the Time Series.

The typical time series generated by an autoregression model fluctuates up and down. Its
oscillations are not regular, but tend to have an average length which depends on the difference
equation. If we think of (2) as generating the series for successive values of ¢t we see that each

set of p y’s directly affects the next y;. If p = 2, we can write the equation

(62) Yt = 1Ye-1 + Paye—2 + us

= (¢1+ d2)ye-1 — P2(ve—1 — Ye—2) + us,

which indicates that the direct effect of preceding y,’s on y; involves the value of y;_;, and

the change between y;_; and y;—;. This effect will generally have a tendency to produce

fluctuations.

Another way of looking at the process is in terms of the representation of ys = > 2, §rus—y.
A given u, will affect a subsequent y,;4 according to the coefficient §;. Since these coefficients
oscillate, the effect on successive y,’s fluctuates, tending to produce fluctuations in the series

Ye.

The fluctuating behavior is also indicated by the covariance functfion. Since o(s) # 0
(usually), there is some statistical association between y; and y;,, though it tends to decrease
as s (> 0) increases. This association (measured by the correlation coefficient) tends to fluc-
tuate. For example, if there is a pair of complex roots, the trigonometric functions oscillate

and the association may increase with s in some intervals (of s).

16



7. Partial Autocorrelations.

A stationary stochastic process {y;} with finite second moment defines an autocovari-

ance sequence {o(h)}. In turn, each set 5(0),0(1),...,0(p) defines a set of coefficients

#1(p), - - ., $p(p) by the p Yule~Walker equations

4

(63) D o(s—5)¢ip) =o(s), s=1,...,p.
i=1
We shall now show that the autoregressive coefficient ¢,(p) in the fitted AR(p) model
is identical to the partial correlation coefficient between y; and Ye—p “holding yi—1,...,%—ps1

fixed.” This partial correlation coefficient is the correlation between the residual of y: regressed

On Y¢—1, ..., Yt—p+1 and the residual of y;_, regresssed on y;_1,..., Yt—p+1. Wesuppose £y, = 0.

Define
Ye-1 o(1)
_ Yt-2 _ a(2)
(64) Egzll) = . 3 Eytggp Y = zp—-l = . ’
Yt—p+1 o(p—1)
o(0) o(l) ... o(p-2)
_ e o(1) a(0) ... o(p—3)
(65) ey Ny =g = | , ,
o(p—2) o(p—3) ... o(0)

Then the vector of regression coefficients ¢p—1 = [¢1(p—1),..., dp-1(p— 1)]' of y; on yﬁﬁ]l) =

(¥e=1,-- -, Yt—p+1)' is the solution to
(66) Bp-16p-1 = Tp-1.

The vector of regression coefficients of y;—, on ys_p41, . . ., y¢—1 is defined by the same equation.

(The covariances of y, and y, depends only on |r — s|, not the sign of r —s.) Thus the vector of

17



regression coefficients of y;_, on zg’: _11) is ap—l = [¢p_1(p -1),...,d1(p— 1)]2 The variances
of the residuals are )

(67) E(ye = #-1977") = 0(0) = $p-12p-185-1,

(68) £ (ve—p ~ p-1821") = 0(0) = $1Zp18p1;

these two are the same. The covariance between the two residuals is

(69) E(yt ¢p 1y(p Y )(yt—p ¢p lyt 1)) = ”(P) ¢p 1Ep 1¢p—

The partial autocorrelation between y; and y;_p, given y(" Y is

o(p) - ¢;—1§p—1‘2p—1
‘7(0) - ¢’p-—1§p—-1¢p—1 |

(70) ' PACF(p) =

Now let us write the equation for the vector of regression coefficients of y; on yz—1,...,¥:—p

in partitioned form

[2;;—1 ap—l] [¢‘(1)(P)} [%—-1]
(71) AN I L A
Gp-1 9(0)] | 4(p) a(p)

where gp—l = [o(p—1),.. a,a(l)]'. The partitioned equations are

(72) §p—1¢(l)(1’) +Gp-16p (p) = 0p-1,

(73) 7180 (0) + 0 (0)4s(p) = o (o).
The first equation yields
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(74) $D(p) = 721051 — £;2155-145()
= ?,p—l - ¢p(P)‘:?5p—1-

Substitution into (73) yields

(75) 7(0) = p—1 85715 p-1| bp(p) = o(p) — f; 2, 10p-1-

~ _1~
Comparison of (70) and (75) shows that ¢,(p) = PACF(p).

These equations lead to the Levinson-Durbin recursive relations (74) and

g(P) - g;:—lqsp—l

2(0) - g;—1¢p—1 )

(78) by (p) =

The parameters o(0) and {#,(p)} are equivalent to the sequence {o(h)}.

8. Prediction.

The autoregressive process (2) for 4 = 0 can be written

(77) Yt = P1Y-1+ ...+ Gpyr—p + us,

where u; is independent of y;—1,y:—2,.... Then the conditional expectation of y; given

Yi—1,Yt—2,...18
(78) E{Yelye-1,Yt-2,-- Y = 1ye—1+ ... + DpYt—p.

This conditional expectation is the best predictor of y; based on the past. Its variance is

(79) £[¢1yt—1 +...4+ ¢pyt—p - yt]z — fuf — o2

19



The mean squared error of any other predictor, say f(y¢—1,¥e—2,-..), is

(80) E1f (Ye1, -2, ..) — w]?
= E[f(ye-1,Ye-2,--.) — D1¥e—1 — ... — SpYe—p — us)®
=Eul + E[f(Ye-1,Yt=2,- - ) — P1Yt—1 — - .. — PpYs—p)*.
Theorem 5. The predictor of y; based on y;—1,y;—2, ... with minimum mean square

error for the stationary stochastic process satisfying (2) for which the roots are less than 1 in

absolute value is (58).
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